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Learning feedforward control based on the available dynamic/kinematic system model
and sensor information is generally effective for reducing the tracking error for a learned
trajectory. For new trajectories, however, the system cannot benefit from previous learn-
ing data and it has to go through the learning process again to regain its performance. In
industrial applications, this means production line has to stop for learning, and the over-
all productivity of the process is compromised. To solve this problem, this paper proposes
a feedforward input generation scheme based on neural network (NN) prediction. Learn-
ing/training is performed for the NNs for a set of trajectories in advance. Then the feed-
forward torque input for any trajectory in the predefined workspace can be calculated
according to the predicted error from multiple NNs managed with expert logic. Experi-
mental study on a 6-DOF industrial robot has shown the superior performance of the
proposed NN based feedforward control scheme in the position tracking as well as the re-
sidual vibration reduction, without any further learning or end-effector sensors during
operation. [DOI: 10.1115/1.4025986]

1 Introduction

End-effector performance in industrial robots suffers from the
undesired discrepancy between the expected output and the actual
system output, known as the model following error. Usually, the
complete dynamics to define this discrepancy cannot be modeled
accurately due to its complexity and uncertainty. Thus, it is hard
to compensate for it by standard model based feedforward control
or model based adaptive control techniques.

If the robot is to execute repetitive tasks, and the robot repeat-
ability is good, the error information from past iterations/periods
can be utilized to reduce the error for the next iteration/period
using the learning control techniques, such as iterative learning
control (ILC) [2] and repetitive control [3]. In the way of ILC, the
learning controller learns the feedforward control input for a par-
ticular trajectory. For new trajectories, however, the learned
knowledge cannot be directly applied and the system has to go
through the learning process again to regain its performance,
which is undesired in industrial applications.

On the other hand, if clear patterns appear in the error behavior,
black box identification techniques can be applied to estimate the
model following error before initial run for new trajectories based
on the information from past learned trajectories. These predic-
tions can be then utilized to modify the feedforward compensation
torque for new trajectories.

Several earlier works for this case have attempted to extend the
learning knowledge to other varying motions using the techniques
such as approximate fuzzy data model approach [4], neural net-
work [5], adaptive fuzzy logic [6], and experience-based input
selection [7]. Most of these algorithms are, however, either too
complicated or not suitable for highly nonlinear systems, and
none of them have explored the multi-joint robot characteristics
with joint elasticity or proven their performance in the actual
robot setup.

In this paper, by studying the robot dynamics and error charac-
teristics, we propose a feedforward input generation scheme using
radial basis function NN [8–10] to learn and predict the model fol-
lowing error. Learning/training is performed for the NNs prior to
the prediction for real-time control stage. The prediction and con-
trol problem is properly decoupled into subproblems for each indi-
vidual joint to reduce the algorithm complexity and computation
requirements. The performance of the proposed approach is exper-
imentally evaluated and compared with the sensor based learning
control, which requires additional learning and sensing for each
new trajectory.

2 System Overview

Consider an n-joint robot with gear compliance, which is com-
monly used in industrial applications. The robot is equipped with
motor side encoders for real-time feedback, and an end-effector
sensor (e.g., accelerometer) for off-line training use3.

2.1 Robot Dynamic Model. The dynamics [12] of this robot
can be formulated as4

M‘ðq‘Þ€q‘ þ Cðq‘; _q‘Þ _q‘ þ Gðq‘Þ þ D‘ _q‘ þ F‘csgnð _q‘Þ
þ JTðq‘Þfext ¼ KJ N�1qm � q‘

� �
þ DJ N�1 _qm � _q‘

� �
(1)

Mm €qm þ Dm _qm þ Fmcsgnð _qmÞ ¼ u

� N�1 KJ N�1qm � q‘
� �

þ DJ N�1 _qm � _q‘
� �� �

(2)

where q‘; qm 2 Rn are the load side and the motor side position
vectors, respectively. u 2 Rn is the motor torque vector.
M‘ðq‘Þ 2 Rn�n is the load side inertia matrix, Cðq‘; _q‘Þ 2 Rn�n is
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3If the computing resource and the sensor configuration allow, the end-effector
sensor can also be used online [11]. This paper, however, will address the
conservative case where the end-effector sensor is for off-line training use only,
which is preferred in industry due to the cost saving and the limited real-time
computational power.

4The dynamic model and the controller introduced later will be greatly simplified
if the joint compliance is absent (i.e., KJ ¼ 1;DJ ¼ 1, and q‘ ¼ qm=N). The
proposed controller may not be necessary in this special case since the problems
(such as mismatched dynamics and the residual vibration behavior) arising from the
joint compliance may not exist.
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the Coriolis and centrifugal force matrix, and Gðq‘Þ 2 Rn is the
gravity vector. Mm, KJ, DJ, D‘, Dm, F‘c, Fmc, and N 2 Rn�n are all
diagonal matrices. The (i,i)-th elements of these matrices repre-
sent the motor side inertia, joint stiffness, joint damping, load side
damping, motor side damping, load side Coulomb friction, motor
side Coulomb friction, and gear ratio of the i-th joint, respectively.
fext 2 R6 denotes the external force acting on the robot due to
contact with the environment. The matrix Jðq‘Þ 2 R6�n is the
Jacobian matrix mapping from the load side joint space to the
end-effector Cartesian space.

Define the nominal load side inertia matrix as Mn ¼ diag
ðMn1;Mn2;…;MnnÞ 2 Rn�n, where Mni ¼ M‘;iiðq‘0Þ, and
M‘;iiðq‘0Þ is the (i,i)-th element of the inertia matrix M‘ðq‘0Þ at the
home (or nominal) position q‘0. Mn can be used to approximate
the inertia matrix M‘ðq‘Þ. The off-diagonal entries of M‘ðq‘Þ rep-
resent the coupling inertia between the joints. Then, the robot
dynamic model can be reformulated as

Mm €qm þ Dm _qm ¼ u� Fmcsgnð _qmÞ
� N�1 KJ N�1qm � q‘

� �
þ DJ N�1 _qm � _q‘

� �� �
(3)

Mn €q‘ þ D‘ _q‘ ¼ d‘ðqÞ
þ KJ N�1qm � q‘

� �
þ DJ N�1 _qm � _q‘

� �
(4)

where all the coupling and nonlinear terms, such as Coriolis force,
gravity, Coulomb frictions, and external forces, are grouped into a
fictitious disturbance torque d‘ðqÞ 2 Rn as

d‘ðqÞ ¼ MnM�1
‘ ðq‘Þ � In

� �
½KJ N�1qm � q‘
� �

þ DJ N�1 _qm � _q‘
� �

� D‘ _q‘� �MnM�1
‘ ðq‘Þ½Cðq‘; _q‘Þ _q‘

þ Gðq‘Þ þ F‘csgnð _q‘Þ þ JTðq‘Þfext� (5)

where q ¼ qT
m; qT

‘

� �T
and In is an n� n identity matrix.

Thus, the robot can be considered as a MIMO system with 2n
inputs and 2n outputs as follows

qmðjÞ ¼ PmuðzÞuðjÞ þ PmdðzÞdðjÞ (6)

q‘ðjÞ ¼ P‘uðzÞuðjÞ þ P‘dðzÞdðjÞ (7)

where j is the time index, z is the one step time advance operator
in the discrete time domain, and the fictitious disturbance input is
defined as dðjÞ ¼ d1ðjÞ; …; dnðjÞ

� �T
and

diðjÞ ¼ diðqðjÞÞ ¼ �Fi
mcsgnð _qi

mðjÞÞ; d‘iðqðjÞÞ
� �

(8)

where the superscript i denotes the i-th joint component of the
variable. As shown later, we will use feedforward torque to com-
pensate for this fictitious disturbance input d. The transfer func-
tions from the inputs to the outputs (i.e., Pmu;Pmd;P‘u, and P‘d)
can be derived from Eqs. (3) and (4) as in Ref. [13].

2.2 Controller Structure for Iterative Learning Control.
The robot dynamic model (3) and (4) is in a decoupled form since
all the variables are expressed in the diagonal matrix form or vec-
tor form. Therefore, the robot controller can be implemented in a
decentralized form for each individual joint.

Figure 1 illustrates a control structure for this robot system to
track the load side joint reference trajectory q‘r . The proposed
control structure has two nested loops. The inner loop (i.e.,
feedback controller C and feedforward torque signal consisting
of the linear component sln from F2 and the nonlinear compo-
nent snl) uses the motor torque u as the control to the robot plant
to achieve motor side tracking, which is the common practice in
industrial applications. The joint flexibility due to the gear
transmissions is addressed in the outer loop (i.e., feedforward

reference controller F1 and feedforward reference signal rq),
which uses the motor side reference �qmr as the control to the
inner loop to achieve the ultimate objective, i.e., load side track-
ing. Here, C can be any linear feedback controller such as a
decoupled PID controller to stabilize the system. The feedfor-
ward controllers, F1 and F2, are designed using the nominal
model inverse as

qmrðjÞ ¼ P̂muðzÞP̂�1
‘u ðzÞq‘rðjÞ ¼

D
F1ðzÞq‘rðjÞ (9)

slnðjÞ ¼ P̂�1
muðzÞ qmrðjÞ þ rq;kðjÞ

� �
¼D F2ðzÞ�qmrðjÞ (10)

where �̂ is the nominal model representation of �. rq and snl are
the additional reference and feedforward torque updates, respec-
tively, with the initial/nominal values designed as

rq;0 ¼ NK̂�1
J ðŝ‘r � M̂n €q‘r � D̂‘ _q‘rÞ (11)

snl;0 ¼ sff ;0 � sln;0 (12)

where the subscript 0 denotes the calculation prior to the first
experiment iteration, and

sff ;0 ¼ ŝmr;0 þ N�1ŝ‘r (13)

ŝ‘r ¼ M̂‘ðq‘rÞ€q‘r þ Ĉðq‘r; _q‘rÞ _q‘r þ Ĝðq‘rÞ
þ D̂‘ _q‘r þ F̂‘csgnð _q‘rÞ þ JTðq‘rÞfext;r (14)

ŝmr;0 ¼ M̂m
�€qmr;0 þ D̂m

�_qmr;0 þ F̂mcsgnð�_qmr;0Þ (15)

Remark 1. Note that (13)–(15) are obtained from Eqs. (1) and (2)
using the nominal model representations. With this nominal tor-
que calculation, rq,0 in Eq. (11) is aimed to account for the joint
torsion due to the nominal nonlinear torque at the load side.

Equation (12) and Fig. 1 show that the overall nominal feedfor-
ward torque sff ;0 is divided into two parts. The nonlinear part snl;0

is injected inside the inner plant to compensate for the fictitious
disturbance d and to make the inner plant behave as the chosen
nominal linear model. With this in mind, the linear feedforward
torque sln;0, which is computed by Eq. (10) using the nominal lin-
ear model, can be injected outside the inner plant to achieve the
nominal performance. The model uncertainty and inaccuracy
resulted from the use of the nominal model are addressed by the
following schemes to further refine the feedforward torque update
snl.

If the trajectory is repetitive, the two updates, rq,k and snl;k,
where the subscript k is the experiment iteration index, can be
generated iteratively by some ILC scheme such as the two-stage
ILC algorithm designed in Ref. [13]. Particularly, the feedforward
torque update snl;k is designed to compensate for the model fol-
lowing error of the inner plant (shaded area with dashed outline in
Fig. 1) caused by the model uncertainty and the fictitious

Fig. 1 Robot control structure with reference and torque
update. The ultimate objective is to make robot plant output q‘
track the load side reference trajectory q‘r. Only motor side
position output qm is available for the real-time feedback. rq and
snl are the additional reference and feedforward torque updates
to further compensate for the joint flexibility and the fictitious
disturbance d, respectively. See Sec. 2.2 for more controller
details.
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disturbance d. This can be realized using the plant inversion learn-
ing scheme [13], i.e.,

snl;kþ1ðjÞ ¼ QuðzÞ½snl;kðjÞ þ P̂�1
€‘u
ðzÞep€‘;kðjÞ� (16)

where P€‘u is the transfer function from the motor torque u to the
load side joint acceleration €q‘. The corresponding model follow-
ing error is defined as ep€‘;k ¼ P̂€‘ulk � €q‘;k, where lk is the torque
input to the inner plant. Due to the unavailability of the load side
joint acceleration measurement €q‘;k, we utilize the estimate �€q‘;k
from the end-effector accelerometer measurements using the
inverse differential kinematics technique proposed in Ref. [11].
The low pass Q-filter Qu(z) is designed to trade off the perform-
ance bandwidth with the model uncertainty at high frequencies. It
was shown in [13] that this torque update scheme is effective in
reducing the end-effector vibration captured by the accelerometer.

2.3 Controller Structure With NNs. If a new motion trajec-
tory is desired, the prior ILC learning knowledge cannot be
directly applied. Moreover, if the end-effector sensor is not avail-
able for executing the new task, the model following error ep€‘;k
cannot be obtained for new learning process. In this paper, we
propose a NN scheme to predict the model following error at the
first iteration for a set of trajectories without further learning or
end-effector sensor. By doing this, the unmodeled dynamics (e.g.,
uncertainty and disturbances) can be approximated in an indirect
way by the NNs of model following error, which later can be used
to refine the feedforward torque to compensate for such unmod-
eled dynamics.

Figure 2 shows the control diagram with NN predictor for the
feedforward torque update, where Fnl denotes the nominal nonlin-
ear feedforward controller designed in Eq. (12). The dashed lines
indicate the parts when the end-effector sensor is available and
NN training can be conducted (e.g., in robot factory tuning/testing
stage). The training of the NNs will be detailed later. The other
parts with solid lines indicate the nominal control structure at the
operation stage, where the NN predictor provides the model fol-
lowing error estimate êp€‘ for each joint for any trajectory in the
trained workspace. The feedforward torque for a new trajectory is
then computed based on such NN prediction as

snl;1ðjÞ ¼ QuðzÞ½sn‘;0ðjÞ þ P̂�1
€‘u
ðzÞêp€‘ðjÞ� (17)

Note that the prediction êp€‘ and the updated feedforward torque
snl remain the same for all the iterations after the initial run. How-
ever, if the end-effector sensor is available, the ILC process (16)
with newly measured/calculated error can still continue after this
initial run.

Remark 2. In this paper, we focus on the generation of the non-
linear feedforward torque snl. This feedforward torque update
aims at reducing the model following error ep€‘ of the inner plant

instead of the tracking error e ¼ q‘r � q‘ for the overall system.
However, by making the inner plant behave as the nominal linear
model, the tracking performance will be effectively improved,
since the linear feedforward torque signal sln injected outside the
inner plant is computed by Eq. (10) using the nominal linear
model.

Remark 3. A training stage involving certain effort (as shown
later) is required for the proposed NN approach. However, this
training is one time only and can be performed in the robot factory
tuning/testing stage. After that no learning effort is required for
any new trajectory within the trained workspace. This offers a sig-
nificant advantage over the typical ILC schemes, which need to
go through the learning process whenever the trajectory is
changed.

3 NN Predictor

In this section, a prediction system based on previously
acquired training data is presented to estimate the joint accelera-
tion model following error, which exhibits repeatable patterns
under certain conditions of the robot. Figure 3 shows the predictor
structure with all the parts detailed below.

3.1 Predictor Input Definition. The first step in this predic-
tion problem is to choose the appropriate input signals that define
the model following error. In this paper, we propose to define the
predictor inputs as the trajectory references of either 2 dimensions
(2D, velocity and acceleration) or 3 dimensions (3D, position, ve-
locity, and acceleration). Moreover, due to the coupling dynamics
(i.e., the grouped disturbance term d‘ðqÞ) of the multi-joint robot,
we identify the model following error as a function output from a
proper combination of the trajectory references from all joints to-
gether, which is termed as the motion influence in this paper.

PROPOSITION 1. The model following error ep€‘;0 is a function of
joint trajectory references, if robot dynamics is repeatable and the
nominal feedforward inputs snl;0 and rq,0 are applied.

Proof. By taking the load side joint acceleration €q‘ as the out-
put, Eq. (7) can be rewritten as

€q‘ðjÞ ¼ P€‘uðzÞuðjÞ þ P€‘dðzÞdðjÞ (18)

where P€‘u and P€‘d are the transfer functions from the motor torque
u and the disturbance d to the load side joint acceleration €q‘,
respectively.

According to the control structure in Fig. 1, we denote
Sp ¼ ðIn þ CPmuÞ�1

as the sensitivity function of the closed loop

Fig. 2 Control diagram with NN predictor

Fig. 3 NN predictor structure
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system, where In is an n� n identity matrix. Then the load side
acceleration output €q‘ can be derived as

€q‘ ¼ P€‘uuþ P€‘dd

¼ P€‘uSp ðCþ P̂�1
muÞðqmr þ rqÞ þ snl � CPmdd

� �
þ P€‘dd

¼ P̂�1
muP€‘uSpŜ�1

p rq þ P€‘uSp

� P̂�1
‘u Ŝ�1

p q‘r þ snl � CPmdd
� �

þ P€‘dd (19)

where we have noted that C, Pmu, P€‘u, and their nominal models
(P̂mu and P̂€‘u) are diagonal due to our decoupled dynamic model-
ing (3) and (4).

The input–output equation of the nominal inner plant can be
derived as

€qp ¼D P̂€‘ul ¼ P̂€‘uSp½ðCþ P̂�1
muÞðP̂muP̂�1

‘u q‘r þ rqÞ
� CPmusnl � CPmdd� (20)

Thus, the model following error ep€‘ becomes

ep€‘ ¼ €qp � €q‘

¼ �TuSpsnl � DP€‘uSpðCþ P̂�1
muÞ � ðP̂muP̂�1

‘u q‘r þ rqÞ
þ ðDP€‘uSpCPmd � P€‘dÞd (21)

where Tu ¼ P̂€‘uCPmu þ P€‘u, and DP€‘u ¼
D

P€‘u � P̂€‘u.
Therefore, ep€‘ is a function of q‘r; snl, rq, and d. Equations

(9)–(13) show that the nominal feedforward inputs rq,0 and snl;0

are also functions of q‘r . Moreover, if the robot dynamics is
repeatable and the controller setting remains the same, d will also
be a function of q‘r . Thus, the model following error ep€‘;0 with
nominal feedforward inputs is a function of the joint reference
q‘r . �

This proposition implies that to identify ep€‘;0 solely based on q‘r ,
the feedback/feedforward controller and the robot working environ-
ment should remain consistent for all the training trajectories as
well as the future task trajectories.

Note that the robot dynamics is coupled among joints. Thus,
due to rq; snl, and d in Eq. (21), the model following error for each
joint depends on the reference trajectories of other joints besides
that particular joint. In order to implement the decentralized pre-
dictor for each joint, the NN predictor input for the i-th joint is

synthesized as the motion influence position vector Qi
‘r , velocity

vector _Qi
‘r , and acceleration vector €Qi

‘r , which are defined as the
linear combination of the reference trajectories across all joints,
i.e.,

Q1
‘rðjÞ

Q2
‘rðjÞ
..
.

Qn
‘rðjÞ

2
6664

3
7775

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Q‘rðjÞ

¼

1 /12 … /1n

/21 1 … /2n

..

. ..
. . .

. ..
.

/n1 /n2 … 1

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U

q1
‘rðjÞ

q2
‘rðjÞ
..
.

qn
‘rðjÞ

2
6664

3
7775

|fflfflfflfflffl{zfflfflfflfflffl}
q‘rðjÞ

(22)

_Q‘rðjÞ ¼ U _q‘rðjÞ (23)

€Q‘rðjÞ ¼ U€q‘rðjÞ (24)

where U can be determined given a robot configuration. The entry
/i;j of U indicates the influence factor of the j-th joint motion on
the i-th joint performance (e.g., model following error). This influ-
ence factor /i;j can be approximately determined by the kinematic
relationship (see the example later) between the joints and then
normalized to be within [�1, 1]. The resulting U may not be nec-
essarily symmetric due to different dynamics of each joint. Here,
for simplicity, we assume that the influences between the two
joints are mutually equivalent and thus U could be symmetric. In
this paper, we study the case of a 6-joint robot where the end-
effector orientation is fixed as the home position shown in Fig. 4.
The diagonal elements of the matrix U are set to 1 since the
motion influence on each joint depends directly on its own move-
ment. Nondiagonal elements are determined by the rules in Table 1
according to the convention of axis direction shown in Fig. 4 and
the desired joint rotation direction to move the end-effector with
fixed orientation.

Following this idea, the matrix U becomes

U ¼

1 0 0 1 0 1

0 1 �1 0 1 0

0 �1 1 0 �1 0

1 0 0 1 0 1

0 1 �1 0 1 0

1 0 0 1 0 1

2
6666664

3
7777775

(25)

Finally, the inputs to the prediction system are defined as veloc-
ity (23) and acceleration (24) motion influences for 2D NNs, or
position (22), velocity (23), and acceleration (24) motion influen-
ces for 3D NNs. The dimension selection depends on the available
training data and the computation power. It can be expected that a
3D network will generally provide more accurate prediction than
a 2D network. However, more training data (also more memory
storage and computation capability) will be required for a 3D net-
work to perform effective learning.

3.2 Data Preprocessing. For the NN system to be effective,
it is crucial that there is a proper match between the data and neu-
ron distribution in the input space. Hence, additional data

Fig. 4 6-DOF robot example (a) axis direction convention and
(b) robot home position

Table 1 Nondiagonal elements in matrix U

if ~JA and ~JB are aligned ~JA � ~JB
~JA � �~JB

Dir_iK(~JA)�Dir_iK(~JB) 1 �1 ~JA: Joint axis for which the motion influence is evaluated
Dir_iK(~JA)� –Dir_iK(~JB) �1 1 ~JB: Joint axis the effect of which over ~JA is assessed

Dir_iK: Rotation direction when applying inverse kinematics

if ff~JA
~JB

		 		 � p=2 0
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preprocessing is developed to ensure that the training data covers
all possible input values at which the NN is intended to provide a
prediction. This preprocessing stage consists of a magnitude nor-
malization and variable redefinition of the input data. It is aimed
to simplify the complexity of the function that defines the model
following error from the motion influences and to standardize the
NN learning for optimal performance.

Denote S as the set containing all the time steps, and T as the
total number of time steps for all the executing trajectories. The
data preprocessing stage is to setup the input signals td;s for the
NN predictor fNN, i.e.,

êp€‘ðjÞ ¼
fNNðt1;1ðjÞ; t2;2ðjÞ; t3;3ðjÞÞ; 3D ð26aÞ
fNNðt2;2ðjÞ; t3;3ðjÞÞ; 2D ð26bÞ




where j 2 S ¼ 0; 1; 2; � � � ;Tf g, the subscript d of td;s denotes the
d-th dimension (i.e., d¼ 1 for position, d¼ 2 for velocity, and
d¼ 3 for acceleration) of the inputs, and s denotes the number of
following preprocessing steps applied to this input dimension.

3.2.1 Magnitude Normalization. First, for a given trajectory
motion influences (i.e., Q‘r; _Q‘r , and €Q‘r) and the model following
error ep€‘ to be learned by the NN, a normalization is applied to
each input variable for the i-th joint, i.e.,

bi
0 ¼ max

k2S
ei

p€‘
ðkÞ

			 			; ti
1;1ðjÞ ¼

Qi
‘rðjÞ

maxk2S Qi
‘rðkÞ

		 		 ;

ti
2;1ðjÞ ¼

_Qi
‘rðjÞ

maxk2S
_Qi
‘rðkÞ

		 		 ; ti
3;1ðjÞ ¼

€Qi
‘rðjÞ

maxk2S
€Qi
‘rðkÞ

		 		
where the superscript i indicates the i-th joint component.

3.2.2 Prediction Viability. Note that prediction is only viable
while the end-effector is moving, since it is based on velocity and
acceleration references. Thus, the viability condition, vi

c, is
defined as

vi
cðjÞ ¼ ti

2;1ðjÞ
			 			 > 2 i

2;1

D E
_ ti

3;1ðjÞ
			 			 > 2 i

3;1

D E
(27)

Si
c ¼ j : vi

cðjÞ
� �

	 S (28)

where the logic and Boolean operators are defined as in Table 2.
2 i

2;1 and 2 i
3;1 are small positive numbers to check if a number is

close to zero. Si
c, as a subset of S, encloses the time steps that are

eligible to be processed for the prediction at the i-th joint.

3.2.3 Redefinition on Third Input Dimension. In practice, ref-
erence trajectories are generated to ensure smooth motion. There-
fore, the acceleration and the velocity pose a parabolic-like
relationship on the velocity-acceleration plane (e.g., Fig. 7(a)). By
studying the experimental error characteristics, we note that the
model following error depends on the ratio between the velocity
and the acceleration motion influences more significantly than on
either individual input. To utilize this pattern, the third dimension
(acceleration motion influence) is redefined below:

(1) Change the third dimension to the arctangent between the
acceleration and the velocity motion influences, i.e.,
ti

3;2ðjicÞ ¼ arctanðti
3;1ðjicÞ=ti

2;1ðjicÞÞ 2 ð� p
2
; p

2
Þ. Notice that

6 p
2

corresponds to the motion periods of velocity reversal
(zero-crossing). This will essentially group uncertainties/

changes of friction force together during these velocity re-
versal periods.

(2) Normalize the resulting third input dimension, i.e.,
ti

3;3ðjicÞ ¼ 2=p � ti
3;2ðji

cÞ.
3.2.4 Normalize Second Input Dimension. To distribute data

uniformly along all the input space, we need to normalize the
second input dimension (velocity motion influence) at each
sampled level of the third input dimension, i.e.,

ti
2;2ðji

c;lÞ ¼
ti

2;1ðjic;lÞ
maxk2Si

c;l
jti

2;1ðkÞj
(29)

8ji
c;l 2 Si

c;l ¼ jic : al 
 t3;3ðji
cÞ < bl

� �
	 Si

c (30)

where l is the level number, al and bl are the bounds of the third
input dimension for the l-th level.

This concludes the data preprocessing and the final predictor
are formulated as in Eqs. (26a) and (26b). Note that for the time
steps where the joint remains static, no joint prediction is avail-

able, i.e., êi
p€‘
ðjincÞ ¼ 0;8ji

nc 62 Si
c.

3.3 Multiple NN Activation. In order to enhance the predic-
tion performance, the problem is divided into smaller prediction
problems by means of multiple neural networks. To do this, we
utilize prior knowledge of the error behavior to formulate several
expert logic rules, whereby each network is specialized to a
selected set of input data characterized by similar model following
error behaviors under the motion influence definition. Here, we
confine each NN to a different motion stage according to the signs
of the velocity and the acceleration motion influences as described
in Table 3. In this way, the NNs can learn all nonlinearities (e.g.,
Coulomb friction effect) more effectively in different motion
stages.

By exploring the robot dynamics and error characteristics, it is
noted that the ep€‘ peaks normally appear when motion starts/stops
where strong acceleration is imposed, or when the joint ends acceler-
ating or starts decelerating where acceleration varies exponentially.
In addition, we study an exception where velocity remains almost
constant for long periods. In this case, ep€‘ tends to zero since the
standard feedback and feedforward controller is normally designed
to achieve satisfactory steady-state performance.

Now define the pseudo-gradient and the pseudo-hessian for the
third dimension input signal as

r ti
3;3ðji

cÞ
h i

¼ ti
3;3ðjicÞ � ti

3;3ðji
c � 1Þ

r2 ti
3;3ðjicÞ

h i
¼ ti

3;3ðji
cÞ � 2ti

3;3ðji
c � 1Þ þ ti

3;3ðji
c � 2Þ

Then the following Boolean functions vi
p;� are introduced to

describe specific circumstances in the input data using the logic
and Boolean operators defined in Table 2:

• vi
p;AZ : Acceleration is constant and close to zero, i.e.,

vi
p;AZðji

cÞ ¼ ti
3;3ðji

cÞ
			 			 
2 i

3;3

D E
^ r ti

3;3ðji
cÞ

h i			 			 
 ei
r;3;3

D E
,

where ei
3;3 and ei

r;3;3 are small numbers.

Table 2 Logic and Boolean operator symbols

: Logic Not ^ Logic And _ Logic Or

h�i Boolean brackets with the output of � as 0 or 1

Table 3 NN activation rule

NN Type Velocity Acceleration Motion stage

1 Positive Positive Accelerating
2 Positive Negative Decelerating
3 Negative Positive Decelerating
4 Negative Negative Accelerating

Journal of Dynamic Systems, Measurement, and Control MAY 2014, Vol. 136 / 031002-5

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 02/20/2014 Terms of Use: http://asme.org/terms



• vi
p;VC : Velocity remains constant for a long period, i.e.,

acceleration is close to zero for a long period, which can be
obtained by analyzing the color plot of vi

p;AZ via Dilate and
Erode image processing methods [14].

• vi
p;AS : Acceleration changes sign, i.e., acceleration is close to

zero for a short period, vi
p;ASðjicÞ ¼ :vi

p;VCðji
cÞ

D E
^ vi

p;AZðji
cÞ.

• vi
p;Vp : Positive velocity, i.e., vi

p;Vpðji
cÞ ¼ ti

2;2ðjicÞ > 0
D E

.

• vi
p;Vn : Negative velocity, i.e., vi

p;Vnðji
cÞ ¼ ti

2;2ðji
cÞ < 0

D E
.

• vi
p;A : Initial acceleration, or concave acceleration when

velocity is close to be constant, i.e.,

vi
p;Aðji

cÞ ¼ ti
3;3ðji

cÞ � 0
D E

_ r2 ti
3;3ðjicÞ

h i
< 0 ^ vi

p;AZðji
cÞ

D E
.

• vi
p;D : Final deceleration, or convex acceleration when

velocity is close to be constant, i.e., vi
p;Dðji

cÞ ¼
ti

3;3ðjicÞ � 0
D E

_ r2 ti
3;3ðjicÞ

h i
> 0 ^ vi

p;AZðjicÞ
D E

.

Then each of the four NNs defined in Table 3 can be activated
by the following Boolean function vit

NN with the superscript t as
the type of NN

vi1
NNðjicÞ ¼ vp;ASðjicÞ _ vp;Aðji

cÞ
 �

^ h:vp;VCðjicÞi ^ vi
p;Vpðji

cÞ
vi2

NNðjicÞ ¼ :vp;ASðjicÞ ^ vp;DðjicÞ
 �

^ h:vp;VCðji
cÞi ^ vi

p;VpðjicÞ
vi3

NNðjicÞ ¼ :vp;ASðjicÞ ^ vp;DðjicÞ
 �

^ h:vp;VCðji
cÞi ^ vi

p;VnðjicÞ
vi4

NNðjicÞ ¼ vp;ASðjicÞ _ vp;Aðji
cÞ

 �
^ h:vp;VCðjicÞi ^ vi

p;Vnðji
cÞ

Sit
NN ¼ jic : vit

NNðjicÞ
� �

	 Si
c

The i-th joint model following error prediction êp€‘ðSit
NNÞ from the

t-th NN for the time steps enclosed by Sit
NN can be then computed

by the NN function defined in the next section. However, when ve-
locity is constant for a long period, êp€‘ prediction is set to zero, i.e.,

êi
p€‘
ðji

nNN
Þ ¼ 0; 8ji

nNN
62 Si1

NN

S
Si2

NN

S
Si3

NN

S
Si4

NN

� �
.

3.4 Radial Basis Function NN. With the identified error pat-
terns, the radial basis function NNs [8,9] can be applied to effec-
tively learn the model following error. The success of prediction
relies on the NN learning method utilized to ensure a stable learn-
ing process [10].

Here, we utilize the two-layer NN structure based on the radial
basis function (RBF) as follows

êi
p€‘
ðjit

NNÞ ¼ bi
0
~hit~Cit ~xiðjitNNÞ;~lit;rit

� �
(31)

~hit ¼ hit
1 ; …; hit

NRBF
; hit

0

h i
(32)

~Citð~xiðjitNNÞ;~lit;ritÞ ¼

frð~xiðjitNNÞ;~lit
1 ; r

it
1Þ

..

.

frð~xiðjit
NNÞ;~lit

NRBF
; rit

NRBF
Þ

1

2
6664

3
7775 (33)

frð~x;~l; rÞ ¼ e�
k~x�~lk2

2

r2 (34)

where f it
r ð~xiðjit

NNÞ; lit;ritÞ defines the t-th NN for the i-th joint,

with ~xiðjitNNÞ as ½ti
2;2ðjit

NNÞ; ti
3;3ðjit

NNÞ�
T

for 2D networks, or

½ti
1;1ðjitNNÞ; ti

2;2ðjitNNÞ; ti
3;3ðjit

NNÞ�
T

for 3D networks. NRBF ¼
QD

d¼1 md

denotes the total number of RBF neurons at the input layer, where
D (i.e., 2 or 3) is the number of the input dimensions and md as
the number of neurons in the d-th dimension. For the m-th neuron,
the width of the RBF and its center position are preset and denoted

respectively as rm;
i
3;3 2 R and ~lm 2 RD. Each dimension of ~lm

is uniformly distributed within ½�1; 1� due to the normalization.
Preliminary experimental study is necessary to determine the den-
sity of neurons as a tradeoff between the performance and the
computation/storage requirements. rm is selected to ensure the
overlap of the Gaussian functions among neurons.

The NN output êi
p€‘
ðjit

NNÞ, scaled by bi
0 2 R, is then defined as a

product of the neuron regression vector, ~Cit 2 RNRBFþ1, and the pa-

rameter vector, ~hit 2 RNRBFþ1, where the last entry hit
0 corresponds

to the offset in the output prediction.
Before the prediction takes place, the parameter vector ~hit is

tuned in the NN training process. This is done by using the train-
ing data to minimize the following quadratic cost function, Vit

T , as:

Vit
T ¼

1

2

X
jitNN2Sit

NN

ei
NNðjit

NNÞ
� �2

(35)

where ei
NNðjitNNÞ is the prediction error by the t-th NN given the

current ~hit, i.e., ei
NNðjit

NNÞ ¼ ei
p€‘
ðjit

NNÞ � êi
p€‘
ðjitNNÞ, and ei

p€‘
ðjitNNÞ is the

actual model following error collected by the end-effector sensor
and using the inverse differential kinematics method proposed in

Ref. [11] (the dashed part in Fig. 2). The optimized ~hit for this
least squares problem can be numerically obtained by gradient
method with momentum [15,16] using heuristically adaptive step
size and momentum gain.

From Eq. (35), we can derive the gradient of Vit
T as �ðbi

0Þ
2~Vit

C,

where ~Vit
C is the accumulated regression error vector defined in

Eq. (36). Thus, the gradient descent adaptation law can be formu-
lated as Eq. (38), with ch and gh as the adaptation gains for gradi-
ent and momentum, and the subscript/superscript h denotes the
adaptation iteration index. Notice that the same initial values can
be used for ch or gh in different training processes due to the nor-

malization of ~Vit
C by bi

0. A set of heuristic rules for this learning
process is listed in Table 4.

~Vh
Cit ¼

X
jit
NN2Sit

NN

~Citð~xiðjit
NNÞ;~lit; ritÞ e

i;h
NNðjitNNÞ

bi
0

(36)

!h ¼ diag ch;…; ch;
ch

100

� �
2 RðNRBFþ1Þ�ðNRBFþ1Þ (37)

~hit
hþ1 ¼ ~hh þ !h

~Vh
Cit þ ghð~hit

h � ~h
it
h�1Þ (38)

3.5 Data Postprocessing. A zero-phase low-pass filter is
applied to smooth the final output of the NN predictor, which may
contain discontinuities resulted from the output switching among
different NNs and the prediction unavailability during the static
periods. The cut-off frequency for this low-pass filter is set to be
higher than that of the Q-filter in Eq. (17) to ensure that the pre-
dicted information is rich enough for control update.

4 Discussion of the Approach

4.1 Stability and Safety Analysis. The stability assurance for
this NN based control as well as several safety measures are taken

Table 4 Heuristic rules for adaptation gain selection

Type Consecutive iterations Action

Initial — gh ¼ 0; ch ¼ 7:5� 10�3

Vit
T;h < Vit

T;h�1 1–5 gh ¼ 20c0 þ gh�1

6 gh ¼ gh�1

1–3 gh ¼ gh�1=2

Vit
T;h >¼ Vit

T;h�1 4 gh ¼ 0
5 ch ¼ ch�1=2; gh ¼ 100ch
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into account during the design. On one hand, optimality and sta-
bility of the NN training are ensured by utilizing radial basis func-
tion neurons in a double layer network with a quadratic cost
function and momentum gradient method [16]. On the other hand,
the stability of feedforward control (17) can be assured by proper
plant inversion filter design.

Furthermore, in order to increase prediction safety, data redun-
dancy is utilized at the learning/training stage, and prediction uncer-
tainty is also considered at the error prediction and feedforward
correction stage. Thus, as the uncertainty grows, the prediction
tends to zero, and no feedforward torque modification is applied.

4.2 Memory and Computation Requirements. Note that
most computation and experimental efforts occur in the neural
network training phase, which is only a one-time practice (in robot
factory tuning/testing stage). Thus, the presented approach is
suited for centralized systems, where online equipment such as the
data acquisition target and robot controller have very limited com-
putation and storage resources, but a computer with higher resour-
ces5 is available for off-line learning/training computation. In this
way, one computer could be utilized for NN training and learning
control of several different robots for cost saving. After learning/
training (during robot manufacturing/tuning stage), the standard
local robot controller can efficiently process the prediction as a
simplified look-up table for ~hit and a linear regression in Eq. (31)
for any general motions within the trained workspace.

5 Experimental Study

5.1 Test Setup. The proposed method is implemented on a
6-joint industrial robot, FANUC M-16iB/20, in Fig. 5. The robot
is equipped with built-in motor encoders for each joint. An inertia

sensor (Analog Devices, ADIS16400) containing a 3-axial accel-
erometer is attached to the end-effector. The three-dimensional
position measurement system, CompuGauge 3D, is utilized to
measure the end-effector tool center point (TCP) position as a
ground truth for performance validation. The sampling rates of all
the sensor signals as well as the real-time controller implemented
through MATLAB xPC Target are set to 1 kHz.

5.2 Algorithm Setup. For learning control algorithms (16)
and (17), the zero-phase acausal low-pass filter Qu is set with a
cut-off frequency of 20 Hz for each joint. The cut-off frequency
for the NN output filtering is set to 50 Hz.

In order to train the NNs, experiments are performed to obtain
the model following error variations for a set of different posi-
tions, velocities, and accelerations within certain workspace. In
this paper, as a demonstration example, training and validation
TCP trajectories are designed to move along X-axis for various
distances of range of 60–100 cm, with fixed orientation but differ-
ent varying velocities and accelerations. Only joint 2, 3, and 5
need to move for these trajectories. Figure 6 shows the trajectories
generated for joint 3, where blue and red colors denote training
and validation trajectories, respectively.

As described above, data is preprocessed for the NN training.
Figure 7 shows the training data distribution before and after
applying the motion influence definition and the preprocessing
stage for both 2D and 3D networks. Thereafter, four neural net-
works are trained for each moving joint, with 20 rows of neurons
uniformly distributed in the first dimension (only for 3D NN), 10
and 11 rows of neurons for the second and third dimensions,
respectively, for each NN as a trade-off between the performance
and the computational viability (i.e., in general, denser neuron dis-
tribution can lead to better performance but more computational
and experimental efforts). The neuron distribution ranges (Table
5) are set to be equal or larger than the expected input range. The

Fig. 5 FANUC M-16iB robot system

Fig. 6 Training (blue) and validation (red) trajectories for joint 3

Fig. 7 Joint 5 model following error. Color: Red 5 4, Blue 5 24,
Green 5 0 in [rad/s2]. (a) and (b) are 2D and 3D distributions,
respectively, based on joint 5 reference before preprocessing
stage. (c) and (d) are 2D and 3D distributions, respectively, based
on joint 5 motion influence (the reference combination from all
joints) after preprocessing stage.

Table 5 Neuron distribution ranges for each NN

NN Type First dimension Second dimension Third dimension

1 [�1,þ1] [0,þ1] [�0.1,þ1]
2 [�1,þ1] [0,þ1] [�1,þ0.1]
3 [�1,þ1] [�1,0] [�1,þ0.1]
4 [�1,þ1] [�1,0] [�0.1,þ1]

5Quantification of the required computation resources depends on various factors,
such as the actual robotic system, the implementation platform, and the tools that are
used (e.g. compilers, optimization options, and variable data types).
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RBF width r for each neuron is set to 0.07 to ensure overlap
between neurons (recall that the input range of each dimension is
normalized to be unitless as [–1, 1]). The NN training process (38)
is successfully accomplished with the fast convergence of the cost
function shown in Fig. 8.

5.3 Experimental Results. The performance of executing the
validation trajectory (Fig. 6, red trajectory) with the controller
structure in Fig. 1 is compared for three different nonlinear feed-
forward torques: the basic nominal feedforward torque snl;0 from
Eq. (12) (Basic), the proposed feedforward torque based on neural
network prediction (NNP) (i.e., using Eq. (17) where êp€‘ is
obtained from Eq. (31)), and the learning control based on the end-
effector sensor (LCS) (i.e., using Eq. (16) once where ep€‘;k is obtained
from a prior iteration with the end-effector sensor) [13].

Since the feedforward control (17) aims at model matching for
the inner plant during moving periods, results in these regions show
that the NNP achieves about 94.5% (calculated by using root-mean-
square (RMS) error values) of what the LCS achieves in reducing

the model following error ep€‘. Figure 9 shows a graphical compari-

son of the error reduction6 on joint 2, 3, 5, and end-effector, using
Basic, LCS, NNP, and the prediction error eNN. This result is con-
firmed with Table 6, which shows that the NNP achieves a substan-
tial performance enhancement at the end-effector besides the model
matching performance. Note that the NNP also improves the per-
formance at the static period (i.e., robot joint reference is not mov-
ing) where the prediction is not viable. This static performance
improvement is expected as a result of significant improvement at
the dynamic period (i.e., robot joint reference is moving).

6 Conclusions

This paper investigated a feedforward input generation scheme
based on model following error prediction, which suggested a
viable solution in the industry for end-effector performance
enhancement when production line requires flexibility and effi-
ciency. The proposed method improved feedforward torque com-
pensation based on predicted error by multiple NNs. The robot
dynamics and error characteristics were explored and the NN pre-
dictor was accordingly designed with novel input definition and
data preprocessing stage. The radial basis function was utilized in
the two-layer NNs and the problem was further divided into four
smaller NNs for effective learning. Experimental study on a 6-
DOF industrial robot showed a noticeable performance improve-
ment over the basic controller for the end-effector position track-
ing and residual vibration reduction, during both dynamic and
static periods without learning for a new trajectory.
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